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CARTESIAN ISOMORPHISMS ARE SYMMETRIC MONOIDAL: 
A JUSTIFICATION OF LINEAR LOGIC 

KOSTA DOREN AND ZORAN PETRIC 

Abstract. It is proved that all the isomorphisms in the Cartesian category freely generated by a set of 

objects (i.e., a graph without arrows) can be written in terms of arrows from the symmetric monoidal 

category freely generated by the same set of objects. This proof yields an algorithm for deciding whether 
an arrow in this free Cartesian category is an isomorphism. 

Introduction. We believe that a logic should be completely determined by its 
assumptions concerning structural rules. Assumptions concerning logical constants 
are secondary, because they should be invariable when one passes from one logic to 
another. 

This point of view, which one may also reach on a priori grounds (see [3]), is 
corroborated by what one finds in the area of substructural logics-namely, logics 
with restricted structural rules, like intuitionistic, relevant and linear logic (see 
[6]). To justify a substructural logic one should first of all find a good reason for 
the choice of structural rules. Assumptions concerning logical constants will not 
differ from those one could make in classical logic. What may happen only is that 
classical connectives split into several nonequivalent variants. One finds this already 
in intuitionistic logic, where A -* B and -,(A A -'B) cease to be equivalent. 

All the assumptions for connectives and quantifiers of linear logic may be made in 
classical logic, too. Only the notorious split between so-called "multiplicative" and 
"additive" connectives will disappear. The assumptions for the modal operators 
of linear logic (called "exponentials") are also common: when they are added to a 
classical base of structural rules, they produce just the modal logic S4. 

From this point of view, a justification of linear logic should consist primarily in 
finding reasons for the rejection of the structural rules of contraction and thinning. 
The literature on linear logic looks usually for these reasons in applications envisaged 
in computer science. 

Our ambition is more modest. We find that there may be other reasons, of a 
technical nature and internal to logic, which may also serve to justify the rejection 
of contraction and thinning. We want to show that if among structural rules 
one wants to keep only those that replace collections of premises by isomorphic 
collections of premises, one should reject exactly contraction and thinning. 
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Our result is about the category Cart, the Cartesian category freely generated by a 
set of objects (i.e., a graph without arrows), whose arrows correspond to deductions 
in intuitionistic or classical conjuctive logic, and the category SyMon, the symmet- 
ric monoidal category freely generated by the same set of objects, whose arrows 
correspond to deductions in linear product logic. We talk here about ordinary, 
single-conclusion, deductions. Intuitionistic and classical conjunctive logics have 
identical deductions of this sort, and so do intuitionistic and classical variants of 
linear product logic. 

We formulate Cartesian categories in a nonstandard manner, so that arrows corre- 
sponding to structural principles (or to combinators) are primitive. (We have used 
a similar nonstandard formulation of Cartesian categories for other purposes in [5].) 
The categories Cart and SyMon are syntactic categories (built up from syntactical 
material), whose arrows are equivalence classes of arrow-terms. We prove that every 
isomorphism of Cart can be represented by a term of a SyMon arrow. 

This result is not unexpected, once the problem has been posed. However, 
the proof we shall present requires some effort. Our direct, proof-theoretical, 
approach has the advantage of exposing a technique of contraction and thinning 
elimination. It seems worth knowing that one may sometimes eliminate other 
structural rules besides cut. Another advantage of our proof is that it makes precise 
Gentzen's notion of a cluster (in German Bund), which is sometimes important in 
sequent systems. Gentzen used it in [7] for his second consistency proof of formal 
arithmetic, and Maehara used it in [11] for the first proof-theoretical demonstration 
of the embeddability of intuitionistic logic into the modal logic S4. However, in 
the context of these systems it is rather tricky to define clusters quite rigorously, 
whereas in categories a rigorous definition can be achieved with less trouble: we do 
it below, and call the resulting concept progeny. 

So our proof, independently of the importance of the result proved, may perhaps 
also serve to improve on the arsenal of proof-theoretical techniques. This is the 
reason why we present it in a rather detailed form. 

We said already that our axiomatization of Cartesian categories is not standard: 
besides projections, it does not have a pairing operation on arrows as primitive, but 
it extends the axiomatization of symmetric monoidal categories with the diagonal 
natural transformation. We introduced the appropriate coherence conditions, in 
particular what we call the octagonal equation, in [5], but these matters seem to be 
unknown, and we produce them here again. 

Let us try to dispel a possible misunderstanding of the import of our result. It 
may seem that we are demonstrating something only about the product fragment of 
linear logic, and this fragment may then be considered too restricted to be of interest. 
As a matter of fact, we are not demonstrating anything about any connective at all. 
Rather, as we explained above, we are demonstrating something about the structural 
basis of linear logic. 

Isomorphisms between formulae, which are the objects of our categories, are 
interesting from a logical point of view. Two formulae are isomorphic when it 
is possible to find deductions leading from one to the other that when composed 
reduce to the trivial deduction from A to A (these reductions are represented in 
categories by identity of arrows). That the formulae A and A' are isomorphic is 
equivalent to the assertion that the deductions involving A, either as premise or as 
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conclusion, can be extended to deductions where A is replaced by A', the deductions 
involving A being in one-to-one correspondence with the deductions involving A'. 
Isomorphism is an equivalence relation stronger than the usual mutual implication. 
So, for example, A A B is isomorphic to B A A in intuitionistic logic, while A A A 
only implies and is implied by A, but is not isomorphic to it. We surmise that 
isomorphic formulae may be taken to stand for the same proposition. That means 
reducing identity of propositions to identity of deductions. 

Conjunction in intuitionistic or classical logic and product in linear logic serve 
to join premises in deductions into a single proposition. Our result may then be 
interpreted as saying that if among structural rules we keep only those that shall not 
replace the proposition into which the premises are joined by a different proposition, 
then we end up with linear logic. This is not so much a result about the connectives 
of conjunction and product, but rather a result about the underlying structural base 
of intuitionistic and classical logic on the one hand, and linear logic on the other. 

In the first two sections of the paper we give our nonstandard axiomatization of 
the artesian category Cart, taking care to separate in the second section principles 
concerning the terminal object. By rejecting these principles we obtain an axiom- 
atization of the category Cart-, which is the Cartesian category without terminal 
object freely generated by our set of objects. As a part of the axiomatization of 
Cart we obtain the axiomatization of the symmetric monoidal category SyMon. By 
rejecting the same principles that lead from Cart- to Cart, we obtain an axiomati- 
zation of the category SyMon-, which is the symmetric monoidal category without 
unit object freely generated by our set of objects. 

In the third section we prove the theorem that the isomorphisms of Cart are 
expressible in SyMon-terms. The same theorem holds if we replace Cart by Cart- 
and SyMon by SyMon-. The essential ingredient of the proof is an algorithm 
that transforms every Cart arrow-term expressing an isomorphism into a SyMon 
arrow-term equal to the initial Cart arrow-term. In that algorithm we find for 
every contraction a corresponding thinning, which can then be permuted so that 
one follows immediately the other. In that position, they can be replaced by a 
trivial deduction from A to A. The difficulty consists in defining precisely what it 
means that a contraction corresponds to a thinning, and in checking, as in a cut- 
elimination procedure, that thinning can be permuted with other structural rules 
until it reaches a corresponding contraction with which it gets eliminated. As a 
by-product of our proof we obtain a procedure for deciding whether an arrow of 
Cart is an isomorphism. (This is a different matter from deciding whether two 
objects of Cart are isomorphic, a procedure for which may be inferred from [14] 
and [1].) 

In [2] one can find a number of references to matters related to the topic of this 
paper. This book is concerned with application in theoretical computer science. 

?1. The categories Cart- and SyMon-. In this section we give a construction 
of the free Cartesian category without terminal object, generated by a set of propo- 
sitional letters, i.e., a graph without arrows whose vertices are these letters. This 
category is the image of this set under the left adjoint of the forgetful functor from 
the category of Cartesian categories without terminal object into the category of 
graphs. 
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The objects of the category Cart- are formulae built up from a set of proposi- 
tional letters (whose cardinality is not important to us here) with the help of a binary 
connective , called product. (Usually, . is written x in Cartesian categories and 0 
in symmetric monoidal categories; we have chosen a neutral notation.) For propo- 
sitional letters, which we shall sometimes call simply letters, we use the schemata p, 
q, r, . . ., possibly with indices, and for formulae the schemata A, B, C, . possibly 
with indices. 

The expression f: A F- B means that f is an arrow from A to B. (We write 
F instead of the more usual -* for reasons given in the introduction of [5].) The 
category Cart- has the following primitive arrows, for every formula A, B and C: 

1A: A F-A, 

VA,B,C: A (B C) F (A B) C, 

ABC: (A B) C F A (B C), 

CAB: A .B F B A, 

kA,B: A B F B, 

TAB A -B F-A, 

WA: A F-A A. 

The arrows of Cart- are built from the primitive arrows with the help of the 
binary operations on arrows of composition and product: 

f: A F-B g: B F- C f: A F-B g: C F-D 
gf: A F C ' f g:A.CF-B.D 

(Note that composition is a partial operation, while product is total.) The expression 
f in f: A F- B is called an arrow-term, or simply term. For terms we use the 
schematic letters f, g, h, . . ., possibly with indices. The terms of Cart-, defined 
recursively as the arrows, are called Cart- -terms. Here is a table relating our 
primitive arrow-terms with structural principles and combinators: 

primitive arrow-term structural principle combinator 
1A identity I 

VA,BC, 1AB.C association B 
CA.B permutation C 

rAB, IA,B thinning K 
WA contraction W 

The category Cart- is obtained by postulating the following equations between 
Cart- -terms: 

Categorial equations. 
(cati) For f: A FB, 1Bf f, f 1A = f 
(cat2) For f: A FB, g: B FC andh: C F-D, h(gf) (hg)f. 

Product equations. 
() Forfi: A F-BI,gl: BIF- Cf2: A2F-B2andg2: B2F C2, 

(gi f) (g2f2) = (g1 92)(f 1 f2). 
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(41) 1A '1B = 1A.B. 

b-equations. 
(b) For f: A -D, g: B - E andh: C - F, 

((f g) * h) A,B,C = VD,E,F(f * (g * h)). 

(bb) VA,B,CWA,B,C = 1(A.B).C, WA.B,CVA,B,C = 1A.(B.C) 

(b5) (VA,BC * 1D)VA,B C,D(1A b VB,C,D)bA,B,C D b VA-B,C.D- 

c-equations. 
(c) Forf:A[-Candg:B[-D, 

(g * f )CA,B = CC,D(f g). 

(CC) CB.ACA.B = 1A-B 

(bc6) bC.AB(CAC * 1B)bACB(1A * CBC)bA,B.C CA BC- 

k-equations. 
(k) Forf:AI-Candg:BI-D, 

g9 A.B k VC.D(f * g), fVA,B kC,D(f * g)- 

(bk) (+1-A,B * 'C)VAB,C 1A *B.C- 

(ck) kB,ACA,B = +AB- 

w-equations. 
(w) For f: A IB, 

(f f)WA = WBf 

(bw) bAA,A(lA WA)WA = (WA 1A)WA. 

(CW) CA,AWA = WA- 

(bcw8) IfCABCD =df bA,CBD ('A * (WC,B,D(CB,C * 1D)bB,CD))bA,B,C.D, 

cA A, BB(WA * WB) WAB- 

(kw) kA,AWA = 1A, tA,AWA ' 1A 

The product equations say that product is a bifunctor. The (b), (bb), (c) and 
(cc) equations say that the V and W arrows, which we call simply b arrows,.and 
the c arrows are natural isomorphisms. The equation (b5) is one of Mac Lane's 
pentagonal equations and (bc6) is one of Mac Lane's hexagonal equations. 

The equations (k) and (w) say that the V and 4k arrows (which we call k arrows) 
and the w arrows are natural transformations. The equation (bk) is related to Mac 
Lane's triangular equations of [10, VII. 1, p. 159]. From it we can derive (without 
using c arrows) the following two analogous triangular equations: 

(bV) (VA.B * 1C)VA.B.C V 'A.B C 

(bik) (1A* kBC)VA,B,C = A.BC 

(cf. [10, VII.1, p. 161, Exercise 1]), which we use below. The equation (bcw8) is one 
of the octagonal equations of [5]. 

We haven't economized in the above axiomatization of Cart- (some primitive 
arrows are definable in terms of others and some of the equations are superfluous), 
but this axiomatization has the advantage of extending the standard axiomatization 
of symmetric monoidal categories. 
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The category SyMon- is obtained by rejecting in our axiomatization of Cart- 
the k and w arrows and the k and w-equations. Everything else is as for Cart-. It is 
easy to see that all the arrows of SyMon- are components of natural isomorphisms, 
whereas the arrows of Cart- are components of natural transformations, but not 
necessarily isomorphisms. (The operations on arrows, composition and product, 
preserve natural transformations and isomorphisms.) 

?2. The categories Cart and SyMon. The category Cart is obtained from Cart- 
by assuming that we have in our propositional language a propositional constant 
(nullary connective) I. In addition to the primitive arrows of Cart- we also have 
the primitive arrows: 

0LA. I A - A, 6AI: A I F- A, 

: A I -IA, 6' : A F-Al, 

which we call ab arrows. These arrows say that I is a unit object. (The index I 
of 0LA and bA,I may seem superfluous, but we need it for technical reasons, as it 
will become clear in the next section.) The operations on arrows are as in Cart-, 
and Cart-terms are defined analogously. In addition to the equations we had for 
Cart- -terms, now understood as equations between Cart-terms, we also have: 

ab-equations. 
(a) Forg: B F D, g(IYB =LD(1II g). 
(6) For f: A F C, f6A. =cj(f * 1). 

(661) 6A,16A = 1A, 6A6AIA =1A1- 

(G6) 61.1 = 61.1. 
(a6b) (6AJ * 1C) A,I.C 1A *1,C- 

(66C) GJACA.1 = 6AJ1- 

(aIk) aI.A I.A, 6AJ = WA- 

(f6W) WI - GI. 

(The equation (a6w) can be WI = 6, as well.) 
In Cart most of the a6-equations are superfluous. The equations (a), (Gai), (6) 

and (661) say that a and 6 arrows are natural isomorphisms; the others serve as 
appropriate coherence conditions. 

The category SyMon is obtained by rejecting in our axiomatization of Cart the k 
and w arrows, the k and w-equations, and the a6-equations (a6k) and (a6w). This 
axiomatization of the free symmetric monoidal category SyMon follows closely the 
postulates of Mac Lane [10, VII. 1-7]. The notion of SyMon-term is analogous to 
the notion of Cart-term, but based on the arrows of SyMon. All the arrows of 
SyMon are components of natural isomorphisms, whereas the arrows of Cart are 
components of natural transformations, but not necessarily isomorphisms. 

?3. The isomorphisms of Cart are expressible by SyMon-terms. To prove our 
theorem about the isomorphisms of Cart we need a number of definitions and some 
preliminary lemmata. 
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From now on we call Cart-terms simply terms, since this is the largest class of 
arrow-terms we shall envisage. We speak about Cart-terms only if there is a danger 
of confusion. A product term is a term defined recursively as follows: 

(0) The primitive terms 

AB.C, VA. B.C, CA.B, aLA, Gai 6A.I bi k p.A, tkA.p, Wp 

are product terms, called determining factors. 
(1) The terms IA are product terms. 
(2) If f is a product term, then 1A * f and f 1A are product terms. 
The determining factor of a product term f, if it exists, is denoted by d (f ). A 

product term f is a b-product if and only if d (f ) is a b term, c-product if and only 
if d (f ) is a c term, and similarly for a, a', 6, 6', k and w-products; it is a 1-product 
if and only if d (f ) does not exist. 

A term is developed if and only if it is of the form f, ... f 1, n > 1, where each 
f i, 1 < i < n, is a product term and f,, is a 1-product. 

In a developed term compositions are not nested in products, and arrows corre- 
sponding to structural rules that are not identity don't work in a parallel manner in 
products, but one after another. Moreover, k and w terms of the form VB.C, i C.B 

and WB where the formula B is nonatomic or I have to be replaced by V p.A, k A.p 

and wp, or GLA, 6A.I and a'. We can prove the following: 
DEVELOPMENT LEMMA. Every term is equal to a developed term. 

PROOF. Start with a given term. First we use the equations: 

]tA-B.C = tB.CtA.B * 1C), -C.A B kC.A(1C *A.B), 

which hold by (k) and (a6k), until we are left only with tp.A and kAmp. Next we 
use (bcw8) and (aow) until we are left only with w1 . Finally, we use (.) and (41) to 
get a developed term equal to the original term. 

For example, the term 

Vp-Ip(CIp * ( ICI.p)) 

is developed into 

Ip GI..p( (p.I *lp )(Clip p ) (11 P J-I 61)(11 P *CI P ) 

and the term WI.p into 

1(I P)-(I P)vl.PI.Ip(1I *p.I.p)(1I (CI.P l I)) 

(1I , I.P.P)VI.IP.P(GI * 1PI (1 Wp). 

Note that the developed term of an arrow f: A F- B where no propositional letter 
occurs in A, but only I, is a SyMon-term. We call such arrows I-arrows. (Note that 
for an I-arrow f: A F B, the formula B is also made only of I, there being no arrow 
in Cart of the type I F C where propositional letters occur in C.) 

We could give the Development Lemma in a sharper form by eliminating with the 
help of (bc6) every CAB where A and B are not atomic, ending up only with those 
where A and B are atomic. (We can even replace c1*I by 11I..) This would simplify 
a little bit some of our definitions, but is not essential for our proof. 
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Note that if there are no occurrences of b and c terms in a term we want to bring 
into a developed form, they may be introduced only by applications of (bcw8). So 
if we deal with a formulation of Cart where b and c arrows are not primitive, but 
defined in terms of k and w arrows, and we want to show that a Cart-term is equal 
to a SyMon-term, the eventual presence of b and c terms in our term will be made 
explicit through the agency of (bcw8). If our term is equal to a SyMon-term, the 
remaining k and w terms in its developed form will be eliminated by a procedure 
described in the Maximal-Path Lemma 2 below, while b and c terms introduced by 
(bcw8) may remain. 

Now we introduce a series of definitions leading to an analogue of Gentzen's 
notion of a cluster from [7, ?3.41] (cf [11, ?2.621] and [4, ?5, pp. 312-313]). 

In hA.B.C the occurrences of formulae A, B and C are the indices of this term. 
Note that some of A, B and C might be occurrences of the same formula. We 
define indices similarly for other primitive arrow-terms. Letfn ... f 1, n > 1, be a 
developed term. Take the indices in f i in the order in which they occur and delete 
product signs and parentheses. We call the resulting sequence the f i-index word. 
For example, if f i is 

the fi-index word is pqpqrlrr. 
The length 1(A) of a formula A is the number of symbols in it after deleting 

product signs and parentheses. For example, I((p . I) . q) = 3. The sum of the 
lengths of the occurrences of formulae A in the indices of the 1A terms left of d (f i) 
in f i is called L(f i). For example, 

L(lp (P ((11 * p (1p q * Wp)) * 1p))) = 5. 

Take the fi-index word al ... ak, i < n, k > 1, and the f[+I-index word 
i* *. /m (it is easy to see that m can be only k, or k + 1, or k - 1). Then the set of 

successors of al, 1 < j < k, denoted by s (aj), is defined as follows: 

(1,b) If f i is a 1-product or b-product, then s (aj) = {/l 1}. 
(Note that m = k.) 

(c) If d (f ) is CA.B, then 
* if j < L(fi) + 1 or j > L(fi) + I(A) + I(B), then s(aj) = {/3X}; 
* if L(f i) + 1 < j < L(f i) + I (A), then s (a) = {Pj+(B) }; 

* if L(f ) + I(A) + 1 < j < L(f ) + I(A) + I(B), then s(aj) = {/j-l(A)}. 

(Note that m = k.) 
( If d (f i) is kpA, then 

* if j < L(fi ) + 1, then s (al) = {,Bj }; 

* if j = L(f ) + 1, then s(aj) = 0; 
* if j > L(f ) + 1, then s(cxj) = {flI}. 

(Note that m = k -1.) 
( l) If d(fi) is kAp, then we proceed as for ip.A, replacing L(fi) + 1 by L(fi) + 

I(A) + 1. 
(w) If d (f i) is wp, then 

* if j < L(f i) + 1, then s(aj) = {flj}; 
* if j = L(f ) + 1, then s(a};) = {/j, j+l1?}; 
* if j > L(f i) + 1, then s (aj) = {Bj+ I}. 
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(Note that m = k + 1.) 
(a) If f i is a a-product, then we proceed as in case (i). 

(Wi) If d(f ) is a' , then 
* if j < L(f i), then s (al) = f Pj }; 
* if j > L(f i), then s (aj) = {f X1}?I. 

(Notethatm =k+ 1.) 
(6) If d (f i) is 6A.I, then we proceed as in case (V). 

(si) If d(fi) is', then we proceed as in case (ai), replacing L(fi) by L(fi)+l(A). 
For every /3 in the f -index word, s (f) 0. 
Now comes our analogue of Gentzen's notion of a cluster. Take fI in our 

developed term fA . .. f i. Let the f I-index word be aI ... ak. Take an al that is 
not an occurrence of I (if it exists). Then the set P(aj), called a progeny, is defined 
recursively as follows: 

(0) aj c P(aj); 
(1) if /3 c P(aj), then s(/) C P(xj). 
For example, the developed term 

1(p p).q(Cp-p . lq)(p.p.p lq)(Vp~p.p lq)((lp *wp) * lq) 

with product-terms written one below another, has the progeny P(a2) made of the 
underlined occurrences of p: 

(1p .wp) q 

VApp lq 

+p pop 1 iq 

CP 1q 

1(p-p) q. 

A progeny in a developed term fn ... f l is a set of occurrences of the same 
propositional letter. Every such occurrence is identified with two coordinates, the 
first being the i of the product term f i and the second the place in the f -index 
word. Note that all progenies of a developed term are mutually disjoint. 

The following definitions are related to progenies. A path in P(a}) is an m-tuple 
(P1 . Pm), m > 1, such that for every i, 1 < i < m, / EP(aj), and for every 
i, 1 < i < m, /3i?1 E s(fli). (The upper index of P" does not refer to the place in an 
index word, but to the place in the path! lower indices of a, /3, ... are reserved for 
places in index words.) The length of a path (/31...'") is m. If /3 c P(aj), then 
/3 is terminal if and only if s (/3) 0. So, the leftmost underlined ps in the example 
above all belong to the same path of length 5. The underlined p in l(p p).q and the 

right underlined p in 
+ 

1P ' q are terminal. 

If d (fi) is kpA, then , (f i), called the characteristic index of the fi-index word 
is aL(f )+1 . If d (f i) is tA.p, then , (f i) is aL(f.)+,(A)+1 . Note that in fl, ... fi the 
letter /3 e P (aj) is terminal if and only if, for some i, /3 is f,(f i) or /3 is from the 
f,, -index word. 

If lgf is developed and g is a k-product, then f and g are confronted if and only if 
, (g) isasuccessorofanindexofd(f). Forexample, if gf is (+kq.qp lp)(Vbqq p lp), 



236 KOSTA DOSEN AND ZORAN PETRIC 

then f and g are confronted; if gf is (lq q kp p)Vq q p p, then f and g are not 
confronted, since the right p from VP-P is a successor of a proper part of the index 
p p of i. qqp p Graphically, in the first case we have 

vq.q.p 1 p 

whereas in the second case we have 

vq.y.q.pp 

lq.q kpCp. 

We need all these definitions to prove the following lemma, which is about things 
analogous to the permuting of rules in a cut-elimination procedure. In our lemma, 
one permutes k-products with other terms. 

k-PERMUTATION LEMMA. Suppose that lgf is developed, that g is a k-product, that 
gf is neither of the form +k 1. a' nor k p.6p', and that for f a w-product, f and g 
are not confronted. Then gf = f'g' where g' is a k-product, lf'g' is developed, and 
for j such that e,(g) E s(aj) in P(aj) in lgf, we have in lf 'g' that /Jj from the 
g'-index word /I . . .Pk is terminal in P(/f3) (i.e., /Bj is ,c(g'); note that the f -index 
word coincides with the g'-index word and that aej and /3j are occurrences of the same 
propositional letter). Moreover, for aj in the f -index word that is not an occurrence 
of I, the number of paths of length 3 in P(aj) in lgf is equal to the number of paths 
of length 3 in P(flj) in lf'g'. 

PROOF. 1ff and g are not confronted, then we use one of the equations (cati), (.), 
(b), (c), (k), (w), (a), (6), (a') and (6'). For example, if gf is (1A.B *kC.p)VAB.C p, 

then we have 

gf = ((1A * 1B) * p.C)bAB.p.C, by (.1) 

= A.B.C(1A (1B * kP.C)), by (b). 

It remains to consider cases where f and g are confronted. 
If f is a b-product, then we use the equations: 

(kUPB 1C PBC 'B VPB.C, by (bk) and (cati), 

(tkpA. 1c)bA.p.C = 1A.C(1A *k p.C), by (bk) and (cati), 

A B.pVA. B.p = 1A.B(1A * B.kp), by (bV), (bb) and (cati), 

Vp.B-C p.B.C = 1B.C(kp.B * 1C), by (bV),(bb) and (cati), 

(1A * tp.C)bA.p.C = 1A.C(kA.p 1C), by (bk), (bb) and (cati), 

(1A * +B.Bp)A.B.p = 1A B+A B.p, by (b+C) and (cati). 

If f is a c-product, then we use the equations: 

Vp.ACA.p = 1ACA.p, by (ck) and (cati), 

CA.pCpA = lAkp.A, by (ck), (cc) and (cati). 
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Iff is a k-product, then we use the equations: 

kp.A(kq.p * 1A) kqA(kq.p * 1A), by (k), 

kA.p(1A k Yq.p) =kA.q(lA * Vqp)5 by (k), 

which are read from left to right and from right to left. 
Iff is a a or 6-product, then we use the equations: 

1tp.A(GI.p * 1A = 
GI.A(+Cl.p * 1A) 

kpAp(1A * #I.p) = AI(1A * ki.p), 

q.A(6qI *1A) = GI.A( k.I * 1A), 

kA.q(1A *6 q.I) = 6A.I (1A * kq.I), 

which are derived with the help of (k) and (auk), and correspond to the equations 
displayed above where f is a k-product. 

Iff is a a or 6'-product, then we use the equations: 

(tI~ * 1A)(#7P * 1A) p.A, 

(1A* I.p)(1A *i 1i = CA<Ap' 

k * 1A)( 6p 1Ap)tA 

(1A * iSp.IO(A * J) =i kA.A 

The left-hand side of the first of the last four equations is equal, by (bb) and (cati), 
to 

(+CI.P* 1A) VI.p.A I-p.A(u 1A ), 

which with the help of triangular equations and (&') reduces to the right-hand side. 
We proceed similarly to derive the remaining three equations. -A 

For the proof of the next lemma we need to define what it means to interpret Cart 
in a concrete Cartesian category. For example, take as our concrete category Set, 
the Cartesian category of sets. The objects of Set are sets, the arrows are functions 
between sets, is Cartesian product on objects, I is the singleton {0}, the arrow 1A 

is the identity map, k arrows are the projections, w arrows are diagonal maps, a' 
and 6' assign to an element a the pairs (0, a) and (a, 0) respectively, is defined on 
functions via coordinates, and the b, c, a and 6 arrows are defined in terms of k and 
w arrows. A Cartesian functor from Cart to Set is called an interpretation of Cart in 
Set. Such interpretations exist because of the freedom of Cart. 

PRESERVATION LEMMA. For every isomorphism f: A F- B of Cart, a propositional 
letter occurs n times in the formula A if and only if it occurs n times in the formula B. 

PROOF. Suppose p occurs n times in A and in times in B so that in : n. Take 
the interpretation v of Cart in Set such that v(p) = {0, {0}} and, for every letter q 
different from p, v(q) = {0}. Then the cardinality of v(A) is 2', which is different 
from the cardinality of v (B), the latter being 2"'. So v (f ), and therefore f too, 
cannot be isomorphisms. (Note that v interprets Cart in the Cartesian category of 
finite sets, too.) A 
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As a corollary we have the following lemma, which makes inoffensive the restric- 
tion concerning ai and 6' in the k-Permutation Lemma: 

Gib' LEMMA. If f, . . . f 1 is the developed term of an isomorphism of Cart, then 
for no i, 1 <i < n, we can have fi+jfi of theform VICpO" or p.I 

PROOF. There is no arrow of Cart of the type I F- A where there are propositional 
letters in the formula A. So, if the lemma were not true, we would obtain a 
contradiction with the Preservation Lemma. -i 

Let us introduce one more definition. We shall say that a w-product fi in a 
developed term f , . . . f I is linked to a progeny P (aj) if and only if the index of 
d (f i) belongs to P (a(j). Similarly, a k-product f i is linked to P (ar) if and only 
if X, (f i) E P (caj) (this characteristic index is terminal in P (cxj)). It is clear that 
every w and k-product is linked to only one progeny. We need this notion of linkage 
for the proof of the following lemma, which will serve to determine where lie the 
w-product and k-product that shall be brought next to each other by applying the 
k-Permutation Lemma, and then eliminated. 

MAXIMAL-PATH LEMMA 1. If fn ... fi is the developed term of an isomorphism of 
Cart, then every progeny in f,, . . . f I has exactly one path of length n. 

PROOF. Note that in every progeny P (aj) with m w-products linked to it, m > 0, 
there are m + 1 terminal members. If P (aj) has no path of length n, then all terminal 
members are characteristic indices originating in k-products. Consequently, if 
P (aj) has no path of length n and there are m w-products linked to P (aj), then 
there are m + 1 k-products linked to P(aj). 

Suppose now that P(aQ) has no path of length n. We obtain a contradiction by 
induction on the number m of w-products linked to P(a(j). 

If m = 0, there is exactly one k-product linked to P (aQ). By applying the 
k-Permutation Lemma to fn ... fl we push this k-product to the right until we 
obtain a developed term gn ... gj, equal to f,, . . . f 1, where g, is a k-product. Note 
that, by the 7ibii Lemma, there is no way to get kV.pa' or kP.'6bp while pushing 
our k-product to the right. Take an interpretation v of Cart in Set such that for 
the propositional letter p in ',(gl) we have v(p) = {0, {0}}, and for every other 
propositional letter q, v(q) = {0}. If our original isomorphism was an arrow 
f ... f 1: A F- B, then we have gn . . . gI: A F- B. The cardinality of v(A) is twice 
as big as the cardinality of the image of v(A) under the function v(gl). Since, for 
no function, the cardinality of the image of a set can be greater than the cardinality 
of this set, the cardinality of the image of v(A) under the function v(gn ... 1g), 

which is equal to v (g) ... v(gi), is strictly smaller than the cardinality of v (A). So 
f ... f i, which is equal to gn ... g1, is not an isomorphism. (The permuting of 
the k-product in the basis of this induction is not strictly needed, but makes the 
exposition simpler.) 

If m > 0, take a k-product f E in f,, . .. f i, linked to P(aj), and apply the k-Per- 
mutation Lemma. Two cases can arise. In the first case our k-product will never 
get confronted with a w-product while applying the k-Permutation Lemma. Then 
we push it to the extreme right and reason as in the basis of the induction. The 
remaining case is that we get a k-product g confronted with a w-product f in the 
term gf that occurs in a developed term equal to f , . . . f 1. Then we replace gf by 
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1 c 1 c using (kw), (.) and (. 1), and we apply the induction hypothesis to the resulting 
term. So there is at least one path of length n in P (aj). 

If there are two paths of length n in P (aj), then, by the Preservation Lemma, 
there is a progeny, made of occurrences of the same letter that occurs in P (aX), in 
which there is no path of length n, and this we have just proved to be impossible. -A 

Next we prove a kind of converse of the Maximal-Path Lemma 1: 

MAXIMAL-PATH LEMMA 2. If every progeny in the developed term f, ... fi has 
exactly one path of length n, then f , . . . f I is equal to a SyMon-term. 

PROOF. Suppose for fn ... fi that 

(*) in every progeny there is exactly one path of length n. 

If fn ... fl stands for an I-arrow, then, according to the remark after the proof 
of the Development Lemma, it is a SyMon-term. If fn ... f i does not stand for 
an I-arrow, then we show that it is equal to a SyMon-term by induction on the 
number of w-products in it. As we have remarked at the beginning of the proof of 
the Maximal-Path Lemma 1, in a progeny with m w-products linked to it, there are 
m + 1 terminal members. From (*) it follows that there are m k-products linked to 
that progeny. Therefore, since every w or k-product is linked to only one progeny, 
the number of w-products in fl . . . f I is equal to the number of k-products. 

Let the number m of w-products in f,, . . . f 1 be 0. As we have just shown, there 
are no k-products in fn ... f 1, and therefore this term is a SyMon-term. 

If m > 0, then we take the leftmost w-product in f,, . . . fi1; call it f i. Let P (aj) 
be the progeny to whom f i is linked. Then, by (*), there is a k-product fk, with 
1 < i < k < n, linked to P(aj) (otherwise, we would have in P(aj) at least two 
paths of length n). By the k-Permutation Lemma, we can push this k-product to 
the right until it is confronted with f i in 

f *... fk+lfk ... f>f+lf i ...f I 

Note that terms of the form k',pap or k p.I6 cannot occur during the permuting 
of k-products since this permuting preserves (*). Then, due to (kw), (.) and (41), 
we obtain a developed term 

f ... f*k+lifk ... f +21AlAf i-1 .. . fl 

equal tofn ... f i. By the induction hypothesis, this term is equal to a SyMon- 
term. - 

We can now state our main result: 

THEOREM. An arrow-term denotes an isomorphism of Cart if and only if it is equal 
to an arrow-term of SyMon. 

PROOF. Suppose for the only-if part that f is a term of an isomorphism of Cart. 
By the Development Lemma, f is equal to a developed term fn ... f 1, and by the 
Maximal-Path Lemmata 1 and 2, fn ... fi is equal to a SyMon-term. 

The if part of the theorem follows immediately from the definition of SyMon 
arrows. A 
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The category SyMon is a subcategory of Cart (see [13]). Having this in mind, we 
could reformulate the Theorem as follows: an arrow of Cart is an isomorphism if 
and only if it is an arrow of SyMon. 

Note that all arrows of SyMon are isomorphisms not only in Cart but also in 
SyMon. In other words, SyMon is a groupoid in the sense of Brandt. So we could 
express our theorem by saying that it is the greatest groupoid subcategory of Cart. 

Our theorem cannot be extended to arbitrary Cartesian categories. For example, 
if we deal with a preordered Cartesian category (i.e., one in which between any pair 
of objects there is at most one arrow), then WA is an isomorphism, its inverse being 
VA.A, which is equal to teA.A in such a category. Of course, WA is not expressible 
by a SyMon term. 

Our theorem can also not be extended to closed Cartesian and symmetric monoidal 
categories. It does not hold that an arrow of the Cartesian closed category CartCl 
freely generated by a set of objects is an isomorphism only if it is an arrow of the 
symmetric monoidal closed category SyMonCl freely generated by the same set (in 
SyMon every arrow is an isomorphism, but not so in SyMonCl). In CartCl we 
have an isomorphism between (p . q)r and pr qr, but in SyMonCl there are arrows 
neither from (p . q)' to pr . q' nor vice versa. 

However, our theorem holds if we replace Cart by Cart- and SyMon by SyMon-. 
It is enough to go over our proof and keep the relevant parts involving Cart- and 
SyMon-. 

The proof of our theorem provides a procedure for deciding whether an arrow 
in Cart is an isomorphism. Namely, by combining the Maximal-Path Lemmata 
1 and 2 and the if part of the Theorem we obtain that f . .. f I is the developed 
term of an isomorphism of Cart if and only if in every progeny it has exactly one 
path of length n. So, to determine whether a Cart-term stands for an isomorphism 
it is enough to put it in a developed form f , . . . f i according to the procedure 
described in the proof of the Development Lemma, and then check whether every 
progeny has exactly one path of length n. 

For example, take the term 

( CpAp Yp . ~p p Sp p(l1p W p) ) '1q . 

It is developed into 

1(p p) q(CPP % 1q)(+Cpp.pp 
- 

1q)(Vp~pp * 1q)((1p * Wp) * 1q), 

which we already had in the example after the definition of progeny. Every progeny 
in this developed term has exactly one path of length 5, and hence our original 
term stands for an isomorphism. According to the procedure in the proof of the 
Maximal-Path Lemma 2, the developed term above is transformed successively into 

1(p p) q(CPP p *1q)1(p-p),q((1P * +Cp p) * 1q)((1p * Wp) * 1q) 

1(p.p).q(Cpp * lq)1(p.p).q1(p.p).q1(p.p).q. 

By (cati), the last term stands for the isomorphism cp~p * 1q of SyMon. 
It is not essential for our proof of the Theorem that Cart and Cart- should be 

formulated with the official primitives of the first two sections. The alternative, 
more standard, formulations where b and c arrows are not primitive would do as 
well (though we suppose our official formulations clarify matters). However, it is 
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essential for our proof to derive then the octagonal equation (bcw8), and use it 
as in the proof of the Development Lemma to generate arrow-terms with b and c 
by atomizing the indices of w. If the arrow of Cart from which we started is an 
isomorphism, we shall then be able to eliminate all the k and w terms according 
to our procedure, ending up with an arrow of SyMon. In all that, the role of the 
octagonal equation, primitive or derived, is crucial. 

A simpler proof of the result of this paper may be obtained by relying on a 
coherence theorem for Cartesian categories. This theorem says that two arrow- 
terms of Cart are equal in Cart if and only if they have the same graph, where a 
graph is defined by using an idea of [8, p. 94] (see also [9], [12, Theorem 2.2] and 
[13]). A graph of an arrow-term denoting an isomorphism of Cart is a bijection 
between two finite ordinals, and an arrow-term of SyMon with the same graph can 
always be found. We realized that there is such a simpler proof after completing 
this paper. As we said in the introduction, we believe that the direct, more involved, 
proof given here is still worth presenting because of its proof-theoretical interest. 
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